

PPS-I 2026 Call TKI Green Chemistry and Circularity

In 2026, TKI Green Chemistry and Circularity will make funding available for public-private research that contributes to the realization of the objectives of the Knowledge and Innovation Agenda (KIA) Circular Chemistry and Materials, and in particular for projects that fall within the following themes:

- **Safe alternatives for substances of very high concern (SVHCs) in existing applications**
- **Towards AI Readiness for the Dutch Chemical Processing Industry**
- **Sustainable Chemistry: Enabling Health, Food Security, and Packaging**
- **Transforming the Dutch Chemical Industry towards Sustainable Production**

Applications can be submitted between February 17, 2026, 12:00 p.m. and April 14, 2026, 2:00 p.m. via the call page on the ChemistryNL website.

This call for proposals sets out the conditions for the PPS-I 2026 grant.

Introduction

What knowledge does circular chemistry need to develop in order to contribute to innovations for societal challenges such as the raw materials transition and circular economy, the energy transition, healthcare and combating biodiversity loss, making the sector itself more sustainable, while at the same time promoting strategic autonomy and national earning capacity? This is the central question in the KIA Circular Chemistry and Materials.

Within the broad framework of this question, the program councils of ChemistryNL (Chemical Sensing & Enabling Technologies, Chemistry for Life, Chemistry for Advanced Materials, Conversion and Process Technology, and Chemistry for Energy) have defined four themes on which the innovation support of the TKI Green Chemistry and Circularity will focus in 2026. These themes are

- Safe alternatives for substances of very high concern (SVHCs) in existing applications
- Towards AI Readiness for the Dutch Chemical Processing Industry
- Sustainable Chemistry: Enabling Health, Food Security, and Packaging
- Transforming the Dutch Chemical Industry towards Sustainable Production.

A total of €7,697,825 is available for projects within these themes under this call. The call is open to collaborative projects between knowledge institutions and private companies (SMEs and large companies), but only knowledge institutions and SMEs are eligible for funding.

Scope of the call

The four themes of this call are summarized below. These themes are described in more detail in Appendix A of this call. The text in Appendix A is decisive in determining whether a project falls within the scope of the call.

Theme 1 - Safe alternatives for substances of very high concern (SVHCs) in existing applications

Substances of Very High Concern (SVHCs) are chemical compounds that are harmful to humans and the environment due to toxicological effects such as carcinogenicity, endocrine disruption, persistence in the environment, and bioaccumulation. According to REACH¹, more than 200 substances are currently classified as SVHCs. However, these substances are still widely used in applications such as polymer additives, flame retardants, UV absorbers, and plasticizers in packaging, electronics, construction,

¹ <https://echa.europa.eu/information-on-chemicals/candidate-list-substances-in-articles-table>

textiles, and the automotive industry. Chemical building blocks such as formaldehyde and bisphenol-A also need to be replaced.

Replacing ZSs with safe alternatives is essential for sustainability and the green energy transition. Important examples include the replacement of PFAS in polymer processing aids and flame retardants, safer additives for renewable polymers, and alternatives to hazardous solvents in batteries. This call focuses on the development and implementation of safe alternatives without loss of performance, with an emphasis on applied research. Projects must present a concrete implementation strategy and align with at least one of the five ChemistryNL roadmaps, with proof-of-concept and knowledge transfer to industry as the goal.

Theme 2 - Towards AI Readiness for the Dutch Chemical Processing Industry

Despite the great promise of AI as a disruptive technology, the Dutch chemical industry still makes limited use of these opportunities. This is due to factors such as a focus on safety and stability, a lack of suitable data, unclear use cases, limited resources, and a lack of long-term vision.

Targeted R&D projects can remove these barriers. This is in line with the new Dutch industrial policy, which identifies "Innovative Chemistry" and "Digital Services (including AI)" as priority markets. Projects must include a concrete implementation plan and be directly linked to the chemical processing industry.

Theme 3 - Sustainable Chemistry: Enabling Health, Food Security, and Packaging

The growing world population requires a fundamental change in production according to 'Safe and Sustainable by Design' (SSbD) principles, with minimization of the production footprint, sustainable use, and reuse of materials. Projects that increase the Technology Readiness Level (TRL) to 4-7 are encouraged. This call focuses on three pillars: sustainable pharmaceuticals (enzyme-mediated synthesis, smart delivery systems, green solvents, AI-driven process control), sustainable food and raw materials (high-value fermentation processes, enzymatic extraction, plant-based proteins, sustainable crop protection), and sustainable packaging (barrier properties, circularity, recyclability).

The focus is on strengthening European autonomy through local production and reducing dependence on global chains, especially in pharmaceuticals. For food production, the aim is to achieve an 'efficiency revolution' in which plant-based raw materials are used optimally without undesirable chemicals. In packaging, there is a need for innovative solutions that combine functionality with ecological responsibility, such as polymers with improved barrier properties and design-for-recycling concepts for both conventional and bio-based materials.

Theme 4 - Transforming the Dutch Chemical Industry towards Sustainable Production

The transformation of the chemical industry towards sustainable and low-carbon raw materials and products is essential to maintain its strong position in the Dutch economy. This presents three major challenges for which process technology must provide innovative solutions: flexible operation for fluctuating electricity supply and raw material composition, optimized reactors for rapid exchange of chemicals and heat, and integrated process lines for increased efficiency.

This call focuses on low-TRL, groundbreaking ideas for flexible operation with variable raw material quality and energy availability, cost-competitive high-flux reactors for heat exchange at high temperatures ($>300^{\circ}\text{C}$) and improved mass transfer for electro-, thermo- and biochemical conversions, and integrated process design to increase robustness and efficiency by integrating conversion with feedstock pretreatment and product separation. Projects must provide fundamental knowledge that improves the productivity of installations and is relevant to current or future chemical activities in the Netherlands, preferably with an impact assessment of the potential benefit.

Knowledge dissemination and shared knowledge building

The TKI Green Chemistry and Circularity promotes knowledge dissemination and shared knowledge building. As part of this, project leaders and participants are expected to participate in a program day to share their project results. Furthermore, the TKI Green Chemistry and Circularity asks project leaders to consider whether the system of 'learning communities' (<https://www.wijzijnkatapult.nl/files/topsectoren/Topsectoren%20Toolkit.pdf>) can be used during the project to promote skills development among students and teachers/researchers. Depending on the TRL phase of the project, students from universities (lower TRLs) and colleges (higher TRLs) can be involved. For assistance with the latter, please contact the HCA coordinator at ChemistryNL onno.devreede@chemistrynl.com .

Application conditions

➤ Applicants

Public-private consortia are eligible for funding. The main applicant must be a researcher employed by a Dutch knowledge institution for at least the duration of the project. In addition, at least one Dutch private party must participate in the consortium.

➤ Scope of the call

The application must fit within the scope of this call. This is summarized on the previous page and described in more detail in Appendix A of this call. The text of Appendix A is decisive in determining whether a project falls within the scope of the call.

➤ Conditions for PPS-I 2026 subsidy

The subsidy conditions in Appendix B apply to this PPS-I 2026 subsidy.

➤ Maximum PPS-I 2026 subsidy per project and call budget

A maximum subsidy of €500,000 per project can be applied for within the subsidy conditions in Appendix B.

A total of €7,697,825 is available for the four call themes. The budget per theme is €1,924,456. This may be deviated from if specific themes are under- or over-utilizing the budget.

➤ Submitting an application – templates and deadline

Applications must be submitted via the call page on the ChemistryNL website. The application consists of answering the questions in the web form on the call page, a project plan (see Appendix C), and a budget form (see Appendix D). If an SME (or several SMEs) in the partnership wishes to receive a grant, an SME declaration and a declaration that the company is not in financial difficulty must be included with the application. **Applications can be submitted between February 17, 2026, 12:00 p.m. and April 14, 2026, 2:00 p.m.**

Please note that applications that are incomplete or incorrectly completed will not be processed. To avoid this, you can have your application checked for completeness before submitting the final version. You can do this by sending your draft application to aanvragen@chemistrynl.com . Please state that this is a draft application. Draft applications can be checked until April 1, 2026, at the latest.

The final application must be submitted by **2:00 p.m. on April 14, 2026, at the latest**.

➤ Project end date

This is a research project with a final deadline of December 31, 2031. This deadline cannot be extended.

➤ Young researchers and SMEs

The TKI Green Chemistry and Circularity encourages the participation of young researchers and SMEs.

➤ Critical raw materials and resources

The Green Chemistry and Circularity TKI strives to avoid the use of critical raw materials. Research proposals that do not use critical materials are therefore preferred.

➤ Required co-financing by private parties

The project must involve genuine public-private partnership and the private party must co-finance the project. The minimum private co-financing is described in detail in point 3 of Appendix B.

Procedure

1. Applications must be submitted via the call page on the ChemistryNL website. The application consists of answering the questions in the web form on the call page, a project plan (see Appendix C), and a budget form (see Appendix D). If an SME (or several SMEs) in the partnership wishes to receive a grant, an SME declaration and a declaration that the company is not in financial difficulty must be included with the application. **Applications can be submitted between February 17, 2026, 12:00 p.m. and April 14, 2026, 2:00 p.m.**
2. After submission, the applications will be assessed by a committee. This committee includes representatives from the ChemistryNL program councils. The committee will advise the Board of Directors of the TKI Green Chemistry and Circularity on the approval of the application for PPS-I subsidy 2026. The assessment criteria are:
 - alignment with the scope of the call
 - feasibility of the research idea
 - strength of the consortium
 - innovative character and social and/or economic impact.
3. The Board of Directors of the TKI Green Chemistry and Circularity is expected to decide on the award of the PPS-I subsidy application 2026 in July 2026. If the budget of €7,697,825 is insufficient for the number of applications recommended by the committee, the Board of Directors will decide on the award, taking into account policy considerations and diversity in research topics. No objections can be made to this decision by the Board of Directors.

Questions and information

For questions or further information, please contact the PPS-I coordinator of the TKI Green Chemistry and Circularity, Harmen Veldman (tel. +31 6 31976594, harmen.veldman@chemistrynl.com).

The TKI Green Chemistry and Circularity wishes you every success in developing your public-private partnership projects and looks forward to receiving your application.

Attachments:

Attachment A: Detailed scope

Appendix B: Conditions for grants and use

Appendix C: Project plan format

Appendix D: Budget form (Excel)

Appendix A: Detailed description of the scope of the PPS-I 2026 call

The scope of the call consists of the following four themes:

- Safe alternatives for substances of very high concern (SVHCs) in existing applications
- Towards AI Readiness for the Dutch Chemical Processing Industry
- Sustainable Chemistry: Enabling Health, Food Security, and Packaging
- Transforming the Dutch Chemical Industry towards Sustainable Production

Theme 1 - Safe alternatives for substances of very high concern (SVHCs) in existing applications

Substances of very high concern (SVHCs) are chemical compounds that are hazardous for humans and our environment due to a whole range of different toxicological effects. According to REACH² SVHC are classified as:

- 1 Carcinogens, Mutagens, and Reproductive Toxins
- 2 Endocrine Disruptors and other serious effects (neurotoxicity, immune system, etc.)
- 3 Highly toxic to species in the environment (fish, insects, mammals, birds, etc.)
- 4 Substances that are very persistent in the environment or have bioaccumulation potential.

A substance classified as SVHC can eventually result in restricted use scenarios, significant authorization and ultimately banned usage of those chemicals. Currently, over 200 substances are listed. Although these substances are hazardous for humans and our environment, they are currently still used in many different applications due to their specific properties. Examples include polymer additives like brominated flame retardants, certain UV absorbers and plasticisers used in packaging, electronics, the building, textile and automotive sector. In addition, there is need to replace chemical building blocks that are classified as SVHC, like formaldehyde or bis-phenol-A.

To accommodate the growth of the world population, and its future demand of resources for water, food, and energy to facilitate a higher average life standard, the world needs to become more sustainable. Replacing SVHCs by safe alternatives is a critical element on the road to sustainability. A prime example is the replacement of PFAS in polymer processing aids and fire retardants. But also, (new) renewable polymers require safer additives and solvents to replace hazardous substances like polar solvents (e.g., NMP, DMAc). With respect to the green energy transition, SVHCs are especially used in the context of solvents in batteries (e.g. fluorinated), sulfur containing compounds as electrolyte additive and PFAS as stabilizer in batteries.

This theme focuses on the development of, and most importantly, the implementation of safe alternatives to SVHCs (excluding the materials that are on the “[critical raw material list](#)”) in existing and new applications without loss of performance. Additionally, the further development of the targeted application should be in line with the targets set in at least one of the five roadmaps of ChemistryNL.

To ensure impact, we are looking for projects that establish proof of concepts of SVHC replacements and technology transfer to industry. Therefore, projects should be mainly focussing on applied research. The applicants should present a justification of the chosen SVHC and its relevance together with a vision and a concrete implementation strategy. Even though the focus should be on applied research, in some cases fundamental research looking at foreseen SVHC can be eligible. However, projects have to present a clear connection with industrial needs in order to be considered.

²<https://echa.europa.eu/information-on-chemicals/candidate-list-substances-in-articles-table>

Theme 2 - Towards AI Readiness for the Dutch Chemical Processing Industry

There is huge promise for AI to become *Key Disruptive Technology* that will help tackle urgent societal challenges and transitions in domains such as energy, raw materials, agriculture, circular manufacturing, health, and the environment. Despite this promise progress in the implementation of AI technology in the Dutch chemical industry has so far been rather limited. This is possibly due to (a combination of) factors such as:

- A strong focus on stability and risk mitigation, particularly in relation to process safety
- Competing economic priorities that push AI lower on the agenda
- Insufficient availability of suitable data: current datasets often lack the necessary density (in terms of quantity and distribution of data points), relevant information content, and consistent quality to be reliably used for AI applications
- A lack of clear use cases and detailed implementation plans
- Limited resources (financial, technical, or human)
- Absence of a long-term strategic vision for AI integration

By supporting targeted R&D projects that address these barriers, the AI readiness of the chemical sector can be significantly improved. This would enable, for example, the identification of optimal conditions for small-scale production and the development of process optimizations. Such advancements could lead to major gains in efficiency, both in time and resource use, by leveraging existing knowledge more effectively. Ultimately, this will help strengthen and future-proof the Netherlands' production capabilities. The scope of this call is also strongly aligned with the new Dutch industry policy, in which "Innovative Chemistry" and "Digital Services (incl. AI)" are named as priority markets that will be stimulated with focused investments. The potential of AI as key disruptive technology for chemical applications is also recognized in the new KIA Circular Chemistry and Materials.

To ensure impact, we are looking for projects that potentially contribute to accelerating the scale-up process. Therefore they must include a concrete plan for application and implementation, outlining how the results will be translated into practice within the chemical industry. Moreover, projects should demonstrate a clear and direct link to the chemical processing industry; proposals where chemistry is only a potential application area will not be considered. Consortia may include non-chemical companies, provided that the project topic meets these requirements and remains firmly anchored in challenges relevant to the chemical sector.

Examples of relevant topics for such ChemistryNL-funded R&D projects (as part of the 2026 call) include:

Chemical measurements fit for AI: Development and deployment of affordable, miniaturized, and fit-for-purpose sensors (e.g. in terms of sensitivity, selectivity, and chemical resistance) to generate high-quality data suitable for AI models; Method development and validation for *in silico* data generation to reduce calibration and implementation efforts of machine learning-based sensors

AI-training facilities (representative conditions) for training digital twins

AI-assisted process design to support the exploration and optimization of multi-step process configurations, including pre-treatment, reactor design, separation technologies, and thermal integration.

AI integration for analytical interpretation and diagnostics to enable more intelligent and adaptive decision-making based on complex chemical data.

Data infrastructure: Integration, standardization, archiving, and security of chemical data (FAIR principles), which is particularly challenging for the chemical industry due to the diversity of measurement

types.

AI know-how: Application of machine learning methods for advanced experimental design, process control, active learning, structure–property relationships, and generative chemical design; development of educational materials to support lifelong learning for professionals

AI model validation & explainability, traceability: Establishing trust in AI-driven outcomes and decisions, especially in safety-critical contexts such as hazardous chemical process control, a requirement for acceptance by policy makers.

Theme 3 - Sustainable Chemistry: Enabling Health, Food Security, and Packaging

Sustainability is important to accommodate the expected growth of the world population and its future demand of resources for water, food and energy and health(care). This calls for a significant change of today's practices keeping in mind 'Safe and sustainable by design (SSbD)' principles. Changes include minimization of the manufacturing footprint of materials, sustainable gains of their use during the life cycle, and clever re-use of materials or components thereof. Projects that aim to increase Technology Readiness Level (TRL) towards TRL 4 to 7 are encouraged to apply for this call. In this call we focus on three pillars to make chemistry more sustainable for a healthy future:

1) Sustainable pharmaceuticals

The sustainability of therapeutics/pharmaceuticals and their manufacturing (small molecule APIs and biologicals) remains a significant challenge. This is due to the complex nature of (bio)pharmaceutical manufacturing and supply chain processes – spanning from raw materials to final drug products, analytical services, packaging, and delivery. These processes often require substantial amounts of water, fossil-based raw materials, and energy, while also generating hazardous waste. Innovation to process, product and drug delivery systems are needed to address these challenges. To address these issues, innovation in processes, products, and drug delivery systems is essential. (Bio)process technologies—including process intensification and the application of green chemistry principles—must be designed to be safe, efficient, and sustainable. Examples of key innovations:

- Smart drug delivery (local delivery, sustained delivery, controlled release), allow precise targeting and controlled release, reducing the overall amount of API required and minimizing systemic waste.
- Enzyme-mediated synthesis. Biocatalysis enables selective transformations under mild conditions, reducing energy use and hazardous reagents.
- Low-waste and new reaction platforms. Examples:
 - Photochemistry: Uses light instead of harsh oxidants for selective reactions (e.g., photo-redox catalysis for API intermediates).
 - Electrochemistry: Enables oxidation/reduction without stoichiometric reagents, minimizing waste.
 - Flow Chemistry: Continuous processes improve safety, scalability, and reduce solvent use compared to batch synthesis.
- AI-guided process control: Machine learning models optimize reaction conditions, predict failures, and reduce trial-and-error, saving resources and time.
- The development of biobased or renewable feedstocks for key intermediates. Examples: Using fermentation-derived building blocks (Bioethanol, Succinic acid, lactic acid), plant-derived oils and fats (for lipid-based intermediates or precursors for surfactants) instead of petrochemical precursors lowers carbon footprint and dependency on fossil resources.
- Replacement of halogenated solvents (such as dichloromethane and chloroform) which are widely used in pharma for synthesis and purification but pose serious health, environmental, and

regulatory risks due to toxicity and persistence. Transition to greener solvents such as ethanol or water-based systems reduces environmental hazards.

Strengthening the Dutch and EU Autonomy and Resilience in Pharma through Innovation:

One of the key impacts of the innovations and enabling technologies described above is to reduce global dependency on (bio)pharmaceutical supply chains and strengthen the autonomy and resilience of the Dutch/European sector. By advancing sustainable process technologies, smart drug delivery systems, and green chemistry principles, Europe can bring critical production capabilities back within its borders. This includes the development of modular, end-to-end local production systems, which enable small-scale, flexible manufacturing close to the point of need. Furthermore, automation and digitalization—such as AI-driven process control and robotics—can significantly reduce reliance on human labor, improve efficiency, and ensure continuity of supply. These approaches not only enhance sustainability but also secure the availability of medicines and biologics for EU citizens, even during global disruptions. Focused research on these enabling technologies will be essential to achieve strategic autonomy, supply chain resilience, and environmental responsibility.

2) Sustainable food/feed and their ingredients

Responsible food and feed production and consumption are crucial for improving food security and availability. To achieve this, we need an “efficiency revolution” in the use of agricultural raw materials. This means creating consumer-preferred products based on plant materials, developing technologies that make conversions more efficient, and preventing waste and nutrient losses—all without relying on undesired chemicals. These steps will significantly improve the sustainability of food and feed production and supply. Examples include:

- Food processes in concentrated and/or crowded systems: Innovations such as high-solid fermentation or compact bioreactors reduce water and energy use while maintaining product quality.
- Replacing chemical extraction of ingredients with aqueous (enzymatic) processes: Enzyme-assisted extraction of proteins or bioactive compounds allows full recycling of water and processing aids, minimizing chemical residues and environmental impact.
- More sustainable crop protection agents: Development of biopesticides and RNA-based plant protection technologies reduces reliance on synthetic chemicals while maintaining yield.
- Alternatives for animal-based proteins: Plant-based proteins (e.g., pea, soy) and biotechnologically produced molecules such as precision-fermented dairy proteins or cellular meat offer lower carbon footprints and resource use.
- Use of chemistry for/with new process technologies: For example, coupling green chemistry principles with advanced processing methods like extrusion for plant-based meat analogues, or mild fractionation combined with enzymatic hydrolysis to produce functional protein isolates. Another example is chemical catalysis integrated with bioprocessing to create novel texturizing agents or flavor precursors for alternative proteins.

3) Sustainable food and pharma packaging.

Plastic packaging plays a critical role in ensuring product safety, shelf life, and cost efficiency in both the food and pharmaceutical industries. However, its widespread use has raised significant sustainability concerns, particularly regarding environmental impact and resource consumption throughout the supply chain. As global demand for packaged goods continues to grow, the industry faces mounting pressure to balance functionality with ecological responsibility. Achieving this balance requires innovative solutions that address recyclability, material performance, and circularity—without compromising the stringent quality standards these sectors demand.

Barrier properties of membranes and packaging films against most prominently oxygen, water, and carbon

dioxide, or even perm-selectivity are still in need of higher performance materials with tailored micro- and mesomorphology. Examples are breathable packaging for fresh foods (water and oxygen in, carbon dioxide out), membranes for fresh water (decontamination), highly selective membranes for industrial separation processes. Existing packaging solutions are often difficult to recycle, and bio-based alternatives often lack efficiency or efficacy. Therefore, there is a high need for substantial improvements of barrier properties of (new) polymers as well as circular packaging concepts. This involves both the development of recycling concepts for existing commercial packaging materials, and the development of novel packaging materials, including biobased materials, according to the design-for-recycling concept.

Theme 4 - Transforming the Dutch Chemical Industry towards Sustainable Production

The transformation of the chemical industry towards sustainable and low-carbon feedstock and products will be key to remain a strong pillar in the Dutch economy. This comes with a number of challenges for which the process technology can provide innovative solutions: fluctuating electricity supply and feedstock composition requiring flexibility in operation, optimized reactors for fast exchange of chemical species and heat and highly integrated process line-ups to increase the overall efficiency. In this call, we will explore all three challenges.

1) Flexible Operation for Renewable Feedstock Processing

Chemical processes are designed to operate with constant throughput. Flexible operation, with varying throughput, combined with electric, molecular and heat storage may ultimately be a more economically viable mode of operation due to expected fluctuation in the electricity market and in feedstock availability and composition. Therefore, it can be opportune to design novel processes with more flexibility for feedstock quality and amounts in mind. This call is looking for low TRL, 'game-changing' ideas for allowing more dynamic operation both in terms of feedstock variability and energy availability that can be broadly deployed.

2) Cost-Competitive High-Flux Reactors

Industrial processes are often run at very high throughput to minimize equipment cost. This inherently requires high heat and mass fluxes. This call is looking for low TRL ideas to remove or provide heat at elevated temperatures ($> 300^{\circ}\text{C}$). Concepts for improved, more efficient, cooling as well as concepts to improve heat input via direct or indirect electric heating will all be considered.

Making the feedstock efficiently available to the reactive – catalytic – surface with minimal mass transfer limitations is another key area. Concepts to structurally improving mass transfer rates for electro-, thermo- and bio-chemical conversions are also part of this call.

3) Integrated Process Design to Increase Robustness and Efficiency

A significant portion of the production cost of chemicals is related to separations, both in terms of capital as well as energy cost. Process integration can play a pivotal role to improve overall efficiency. Integration can be done between the main conversion step(s) and feedstock pretreatment and/or with product separations. This call is open for novel, low TRL, ideas with a clear *potential* to improve the overall (atom or energy) efficiency and/or CAPEX of the overall process line-up (work-up section, conversion and separation blocks).

We are looking for projects that provide fundamental knowledge that could improve plant productivity and robustness and ultimately benefit the Dutch economy. To ensure impact, the created knowledge must be relevant to ongoing or future chemical activities in the Netherlands. Therefore, projects are highly encouraged to include a deliverable for a high-level assessment of the potential benefit of the concept.

Appendix B: Conditions for granting and using PPS-I 2026 subsidies

The following conditions apply to the award and use of the PPS-I 2026 subsidy.

1) Use of PPS-I 2026 subsidy

You must use the PPS-I subsidy in accordance with the application and project plan approved by the Board of Directors of the TKI Green Chemistry and Circularity. The project must involve genuine public-private partnership*.

**Actual collaboration: collaboration between at least two independent parties to exchange knowledge or technology or to achieve a common objective based on a division of tasks, whereby the parties jointly determine the scope of the collaboration project, contribute to its implementation, and share the risks and results. One or more parties may bear the full cost of the project, thereby freeing the other parties from the financial risks associated with the project. Contract research and the provision of research services are not considered forms of cooperation.*

2) Conditions for PPS-I 2026 subsidy

All activities to be carried out must comply with the conditions for PPS-I collaboration projects set out in the National EZK Subsidy Scheme as stated on the RVO website ([Link](#)). The obligations of a recipient of PPS-I subsidy 2026 as stated in the regulations apply in full to your organization with regard to the funds made available to you by the TKI Green Chemistry and Circularity.

3) Maximum subsidy, subsidy percentage, and private contribution

- The maximum subsidy per project is €500,000.
- The maximum subsidy for all research organizations in the project combined is €500,000.00.
- The maximum subsidy for all SMEs in the project combined is €150,000.
- The project must involve genuine public-private partnership and the private party or parties must co-finance the project.

The applicable subsidy percentages and maximum subsidy per type of organization and type of research are shown in the table below.

Table: Subsidy percentages and maximum subsidy amounts for PPS-I subsidy 2026

	Research organization	SME	Large enterprise
Fundamental research	80	50	0
Industrial research	50	50	0
Experimental development	25	25	0
Maximum subsidy	€500,000	€150,000	€ 0

The applicable minimum private contributions per subsidy percentage per organization type and type of research are listed in the table below.

Table: Co-financing requirements for PPS-I subsidy 2026

	Research organization	SME	Large enterprise
Fundamental research	No minimum co-financing requirements	50% of own costs in kind.	Minimum of 20% of the costs of the research organization in cash. 100% of own costs in kind.
Industrial research	No minimum co-financing requirements	50% of own costs in kind.	At least 50% of the research organization's costs in cash. 100% of own costs in kind.
Experimental development	No minimum co-financing requirements	75% of own costs in kind.	At least 75% of the research organization's costs in cash. 100% of own costs in kind.

4) SMEs

SMEs wishing to receive PPS-I 2026 funding must declare that they are an SME and that they are not in difficulty (OIM). For the non-OIM declaration, the decision tree for this must also be completed and attached to the application. The declarations can be generated on the RVO website.

For the SME declaration: <https://www.rvo.nl/onderwerpen/subsidiespelregels/ez/mkb-verklaring>

For the OIM decision tree: <https://www.rvo.nl/onderwerpen/subsidiespelregels/ez/onderneming-moeilijkheden>

5) Cost system

You must calculate the costs incurred for collaborative projects for which the PPS-I subsidy is used in accordance with the standard methods described in Articles 10 to 15 of the Framework Decision on national EZK and LNV subsidies ([Link](#)). The costs are taken into account without sales tax if the subsidy recipient who incurred the costs can deduct sales tax (BTW / VAT).

6) Availability

The TKI Green Chemistry and Circularity makes the subsidy available to your organization as an advance payment under the subsidy conditions that apply to the PPS-I subsidy. The subsidy is paid out in several tranches up to 90% of the subsidy granted. The remaining 10% is settled when the subsidy is finalized. You will receive an advance payment schedule at the same time as your application is approved.

7) Period of use

The period of use for the PPS-I subsidy runs until December 31, 2031. After this period, you will no longer be able to use the PPS-I subsidy.

8) Reporting obligation

You must submit a research and financial report on the progress of activities in the previous year in Q1 of every year. This is done in the context of monitoring by the RVO Netherlands Enterprise Agency. In addition, the TKI may request information for purposes of the annual report of the TKI for Green Chemistry and Circularity.

9) Application for determination of PPS-I subsidy 2026

You must submit a full *Aanvraag Vaststelling Toeslag* (request for allowance review) to the TKI for Green Chemistry and Circularity within eight weeks following completion of the project. Such a request for

allowance review consists of a financial and research justification and an audit statement by an independent auditor when the PPS-i-allowance exceeds €125,000. A statement from the Board of Directors must be included for sums not exceeding €125,000.

Communication

- Upon the TKI's written request, you must make up-to-date information about the partnership projects for which the allowance is used available to the general public in an easily accessible manner.
- The TKI bureau will provide support in communications relating to the use of the PPS-i-allowance in your organisation, among other things via ChemistryNL's (social) media channels.
- You must also include the following statement or an equivalent thereof in publications resulting from an activity funded in part with an PPS-i allowance: 'This activity was cofunded by the TKI for Green Chemistry and Circularity with a PPS-i allowance from the Ministry of Economic Affairs and Climate Policy'. Please use the ChemistryNL logo where possible.
- The RVO Netherlands Enterprise Agency and ChemistryNL publish a brief description of all projects funded with a PPS-i-allowance on their websites. This brief description includes the names of participating companies.