From fossils to metals: the energy transition is circular!

René Kleijn

Chemistry for Energy Transition, August 21st 2023

Discover the world at Leiden University

The energy transition is a materials transition: from fossil fuels to metals

A transition from securing inflows to fostering stocks

Current energy system: inflow of 17 Gtons of fossil fuels per year (every year)

Renewable energy system: huge increase in metal stocks in society: solar cells, wind turbines, batteries, electrolyzers, grid etc.

So a huge increase of inflows of metals is required until the transition is complete

But once the transition is complete it is all about fostering a stock of metals in society

LFP vs NMC batteries		
		No Cobalt or Nickel
	\$	30-40% cheaper to produce
	Ì	Much smaller fire hazard
	L ¹	Longer lifetime (50-70%)
	٥	Much more suitable for second life
	16	lower energy density & slower charging (??????)
	\$	LFP production dominated by China
Disc	cover th	ne world at Leiden University

The need for resilient supply chains

Discover the world at Leiden University

From just-in-time to just-in-case

- Resilience comes at a cost:
 - Inventories / buffers / stocks require capital
 - Not only the cheapest supplier but diversity of supply at higher cost
 - Shift from less to more reliable trade partners (bilateral deals US, UK..)
 - Develop alternative (sub-optimal?) product designs / technologies, in case preferred option is not available
 - Substitute rare materials by more common materials (performance?)

What should Europe do to secure supply?

- Short-term: supply primary materials
 - Re-shore supply chains for critical technologies (energy, IT) including mining and refining?
 - Friendshoring (bilateral deals with Canada, Australia etc)
 - Bilateral deals 'with benefits' with more complex partners? (Untied Loan Guarantee / Raw Material Guarantee, combine investments in raw material sectors with aid and responsible sourcing)
- Long-term but start now: foster stocks of metals in society (urban mine)
 - Design the renewable energy system for lifetime extension, second life, re-use and recycle
 - Develop the infrastructure and facilitate the industry for this

Discover the world at Leiden University

This is no longer just economics...

- In a world in geopolitical turmoil, economic dependency becomes a *political issue*
- Economic optimization through globalization has served us well in the past
- Secure and resilient supply comes at a cost
- But the costs of shortages, or worse, weaponized resource / tech supply, are much higher!

Circularity in mobility design is key: act now – harvest later

Discover the world at Leiden University

Circularity Strategies for batteries

- · Less is better
 - $^\circ\,$ Modal shifts (less batteries) (keep an eye on e-bikes / mopeds !)
 - Smaller batteries (less materials)
 - Batteries with less critical raw materials
- Life-time extension & second Life
 - Improve battery management systems / user instructions
 - Improve reparability
 - Design for disassembly
 - Standardization of cells
 - Export policies
 - Pack level: Stationary storage
 - · Cell level: collection testing and remanufacturing
- Recycling
 - Collection
 - Recycling goals (recycled content)
 - $\circ~$ Recycling infrastructure (regional ? national ? EU ?)

Rare Earth magnets in EV motors

Opportunities for Dutch industry

- Explore potential for co-production CRMs from existing flows / industries
- Utilize expertise in transport and distribution (ports, road and rail networks)
- Attract refining industry
- Product and system design to substitute / minimize the use of CRMs
- Utilize our knowledge innovation capacity to develop disruptive technologies that offer different solutions for the functionality that is required by society
- Design products that are suited for repair, re-use, and recycling
- Design and develop new business models focused on lease concepts
- Collection & separation of waste flows and develop second-life applications
- Develop or attract recycling systems / industries

The future of energy is circular

- A fossil energysystem relies on securing a continious inflow of materials : coal, oil, gas
- A renewable energysystem relies on *fostering a standing stock*: solar cells, wind turbines, supergrids, batteries etc.
- If climate goals are met, we will build this stock in the next 30 years
- IF we use circularity principles we only have to do this once and mining can be reduced by an order of maginitude after 2050
- Renewable energy technologies / systems should therefore be designed with circularity in mind